Random geometric graphs.
نویسندگان
چکیده
We analyze graphs in which each vertex is assigned random coordinates in a geometric space of arbitrary dimensionality and only edges between adjacent points are present. The critical connectivity is found numerically by examining the size of the largest cluster. We derive an analytical expression for the cluster coefficient, which shows that the graphs are distinctly different from standard random graphs, even for infinite dimensionality. Insights relevant for graph bipartitioning are included.
منابع مشابه
The distant-2 chromatic number of random proximity and random geometric graphs
We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of ra...
متن کاملA curious gap in one-dimensional geometric random graphs between connectivity and the absence of isolated node
One-dimensional geometric random graphs are constructed by distributing n nodes uniformly and independently on a unit interval and then assigning an undirected edge between any two nodes that have a distance at most rn. These graphs have received much interest and been used in various applications including wireless networks. A threshold of rn for connectivity is known as r∗ n = lnn n in the li...
متن کامل. C O ] 8 D ec 2 00 8 ON VERTEX , EDGE , AND VERTEX - EDGE RANDOM GRAPHS
We consider three classes of random graphs: edge random graphs, vertex random graphs, and vertex-edge random graphs. Edge random graphs are Erd˝ os-Rényi random graphs [5, 6], vertex random graphs are generalizations of geometric random graphs [16], and vertex-edge random graphs generalize both. The names of these three types of random graphs describe where the randomness in the models lies: in...
متن کاملOn Vertex, Edge, and Vertex-Edge Random Graphs (Extended Abstract)
We consider three classes of random graphs: edge random graphs, vertex random graphs, and vertex-edge random graphs. Edge random graphs are Erdős-Rényi random graphs [9, 10], vertex random graphs are generalizations of geometric random graphs [21], and vertex-edge random graphs generalize both. The names of these three types of random graphs describe where the randomness in the models lies: in ...
متن کاملOn Vertex, Edge, and Vertex-edge Random Graphs
We consider three classes of random graphs: edge random graphs, vertex random graphs, and vertex-edge random graphs. Edge random graphs are Erdős-Rényi random graphs [8, 9], vertex random graphs are generalizations of geometric random graphs [20], and vertexedge random graphs generalize both. The names of these three types of random graphs describe where the randomness in the models lies: in th...
متن کاملk-connectivity of Random Graphs and Random Geometric Graphs in Node Fault Model
k-connectivity of random graphs is a fundamental property indicating reliability of multi-hop wireless sensor networks (WSN). WSNs comprising of sensor nodes with limited power resources are modeled by random graphs with unreliable nodes, which is known as the node fault model. In this paper, we investigate k-connectivity of random graphs in the node fault model by evaluating the network breakd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2002